This document attempts to explain the various steps involved in the Consensus Analysis implementation of the Turbulence Renormalisation Method (Turbulence Correction).

The method is defined in Annex M (‘Normalisation of measured power curve data according to the turbulence intensity’) of the standard IEC 61400-12-1 (‘Power performance measurements of electricity producing wind turbines’), Draft CDV version 1.

Note that the method can be applied in two contexts:

- Power Performance
- Resource Assessment

The Consensus Analysis demonstrates usage in the Resource Assessment context.
Basic Premise of Method: Power Performance Context

Starting Point
Observation of power at measured wind speed and Measured turbulence

End Point
Observation of adjusted power at wind speed and Reference turbulence

Ending Point = (Starting Point) + (Correction)

Correction = (End Point) - (Starting Point)

= (Power at Reference Turbulence) - (Power at Measured Turbulence)

≈ (Simulated Power at Ref Turb) - (Simulated Power at Measured Turb)

i.e. the simulated power at a given turbulence is trusted to define a correction (from one turbulence to another), but not trusted to defined the absolute value at given turbulence.
Basic Premise of Method: Resource Assessment Context

Starting Point

Power curve interpolated power value at wind speed and Reference turbulence

End Point

Prediction of power at wind speed and Site turbulence

\[
\text{End Point} = (\text{Starting Point}) + (\text{Correction})
\]

Correction

\[
= (\text{End Point}) - (\text{Starting Point})
\]

\[
= (\text{Power at Site Turbulence}) - (\text{Power at Reference Turbulence})
\]

\[
\approx (\text{Simulated Power at Site Turb}) - (\text{Simulated Power at Reference Turb})
\]

i.e. the simulated power at a given turbulence is trusted to define a correction (from one turbulence to another), but not trusted to defined the absolute value at given turbulence.
Power Curve Simulation Method

Concept: a simulation method which can generate a power curve at any required turbulence.

Note: as said previously, the simulated power at a given turbulence is trusted to define a correction (from one turbulence to another), but not trusted to define the absolute value at a given turbulence.

Hypothesize: that we can define a zero turbulence power curve which gives the ‘instantaneous’ power of a wind turbine.

Assume: the power output perfectly follows the zero turbulence power curve for each instantaneous wind speed value.

Note: we will explain later how to calculate the zero turbulence power curve.
Power Curve Simulation Method

Starting Point:
• A zero turbulence power curve
• Values of wind speed and turbulence intensity

End Point:
• Simulated power at a given power curve and turbulence intensity

In place of using instantaneous wind speed values we assume that the variation of wind speed within the ten minute period is described by a normal distribution as follows:
• Mean = 10-minute Wind Speed Mean
• Std Dev = (10-minute Wind Speed Mean) * (10-minute Turbulence Intensity)

Interpolate the zero turbulence power curve at every wind speed in the probability distribution (0 to 100m/s in 0.1m/s steps)
Take the sum product of the interpolated probability distribution and the interpolated zero turb power values:

\[\text{Simulated Power} = \sum \text{Zero Turb Power} \times \text{Probability} \]
At the power curve knee turbulence causes the 10-minute average power to fall below the zero turbulence (instantaneous) power (knee degradation).

- In the above illustration the 10-minute average value is exactly at the rated wind speed of the zero turbulence curve.
- Therefore half of the ten minute period is at rated power and half below rated power.
- Hence the ten-minute average power is less than the rated power.

Note: mathematically speaking we can say this behaviour is because the second derivative of the power curve at the knee (with respect to wind speed) is negative.
Behaviour of Zero Turbulence Power Curve at the Power Curve Ankle

At the power curve ankle turbulence causes the 10-minute average power to be above the zero turbulence (instantaneous) power.

The above effect is essentially the inverse of the knee behaviour.

Note: mathematically speaking we can say this behaviour is because the second derivative of the power curve at the ankle (with respect to wind speed) is positive.
Overview of Impact of Applying Turbulence Correction (Resource Assessment Context)

Correction — (Simulated Power at Site Turb) — (Simulated Power at Reference Turb)

- Positive Correction (Performance Gain)
- Negative Correction (Performance Degradation)

Turbulence

Wind Speed

Ankle

Knee

Inflection Wind Speed

Reference Turbulence
For each time step (or freq dist bin):

1. Obtain Wind Speed and Site Turbulence for time step
2. Calculate Correction = (Site) – (Reference)
3. Simulate Power at Wind Speed and Site Turbulence
4. Simulate Power at Wind Speed and Reference Turbulence
5. Ref Power = Reference Turbulence Power Curve at Wind Speed
6. Final Power at Wind Speed and Site Turbulence = Ref Power + Correction
Initial Zero Turbulence Power Curve Generation Flow Chart

P = Reference Turbulence Power Curve

Z = Zero Turb Curve Estimate

Theoretical Power
\[P_T = \frac{1}{2} \rho A v^3 \]

A = Rotor Area
\(\rho \) = Reference Density
v = wind speed

Power Coefficient Curve
\[C_p = \frac{P}{P_T} \]

Box A: Power Curve Parameters
- **P**\(_{\text{rated}}\) = Max(P)
- **Cp**\(_{\text{max}}\) = Max(Cp)
- **V**\(_{\text{rated}}\) = \left(\frac{2P_{\text{rated}}}{\rho C_{p_{\text{max}}} A}\right)^{1/3}
- **V**\(_{\text{cut-in}}\) = min speed for which **P** > 0.1\%*P\(_{\text{rated}}\)

Box B: Convergence Criteria
- |**P**\(_{\text{rated}}\) - P\(_{\text{rated-sim}}\)| < 0.1\%*P\(_{\text{rated}}\)
- |**V**\(_{\text{cut-in}}\) - V\(_{\text{cut-in-sim}}\)| < 0.5 m/s
- |**Cp**\(_{\text{max}}\) - Cp\(_{\text{max-sim}}\)| < 0.01

Reference Power Curve Parameters (Box A)

Generate Zero Turbulence Curve

Z (u) = 0
\[v < v_{\text{cut-in}} \]

Z (u) = \(\min(P_T, C_{p_{\text{max}}}, P_{\text{Rated}}) \)
\[v_{\text{cut-in}} \leq v < v_{\text{rated}} \]

Z (u) = **P**\(_{\text{Rated}}\)
\[v \geq v_{\text{rated}} \]

Z = Zero Turb Curve Estimate

Use current guess of zero turb power curve to simulate ref turb power curve.

P\(_{\text{sim}}\) = Simulated Power Curve at Ref Turb

Calculate Power Curve Parameters (Box A)

Simulated Power Curve Parameters

Initial Zero Turbulence Power Curve

Converged?

- **Yes**: Stop!
- **No**: Adjust params & regenerate
The initial zero turbulence curve is refined using one final step. Using the Initial Zero turbulence Curve we derive a correction to change the reference turbulence curve to a new zero turbulence curve. To make this sound a little less confusing we can write this out as follows:

\[
\text{Correction} = (\text{End Point}) - (\text{Starting Point})
\]

\[
= (\text{Simulated Power at Zero Turb}) - (\text{Simulated Power at Reference Turb})
\]

Which gives the following flow chart

- **Initial Zero Turbulence Power Curve**
- **Calculate Correction**
 \[
 = (\text{Site}) - (\text{Reference})
 \]
- **Simulate Power at Wind Speed and Zero Turbulence**
- **Simulate Power at Wind Speed and Reference Turbulence**
- **Final Zero Turbulence Power Curve**

\[
\text{Final Zero Turbulence Power Curve} = \text{Reference Power} + \text{Correction}
\]
Consequences of Final Calculation of Zero Turbulence Power Curve

• Once consequence of the final calculation step of the zero turbulence power curve is that the final curve can exceed rated power. Although this is a non-physical result, it does tend improve the accuracy of the final application.

• The final zero turbulence curve should therefore be thought of as the “Zero Turbulence Curve which gives the best correction to the reference curve” as opposed to being a true reflection of the instantaneous behaviour of the power curve.
Turbulence Turbulence Correction Illustration (Resource Assessment Context)

Step 1. Reference Turbulence Power Curve → Zero Turbulence Power Curve

IEC 61400-12-1 Annex M.3

IEC 61400-12-1 Annex M.2
Consensus Analysis Document Overview

Step 1: The calculation of the power curve look up tables and the zero turbulence power curve is dataset independent.

Step 2: The calculation of the power curve at the target turbulence intensity is dataset dependent.
Consensus Analysis Use of Excel Array Formulas

- In order to make a pure excel implementation of the zero turbulence power curve possible **Excel Array Formulas** have been used.

- The array formulas are found in columns N and O of the 'Input Time Series' sheet (highlighted in blue) of ‘Dataset X - Consensus Turbulence Renormalisation.xlsx’

- Please note the following regarding array formulas:
 - Array formulas allow for very distilled operations e.g. element-wise multiplication of two columns and sum the result can be executed as 'sum(A:A*C:C)'.
 - Array formulas can be identified by their curly brackets e.g. `{=sum(A:A*C:C)}`. - In order for excel to execute an array formula you must press control+shift+return (instead of just return for non-array formulas).“

Consensus Analysis Use of Excel Array Formulas

Excel Array formulae used to integrated probability distribution.
Step 2 involves many individual interpolations of power curves. In order to excessive calculations times in Excel a reference power curve look-up table is first generated.

N.B. Although convenient the use of the look-up tables is not core to either the rotor equivalent wind speed or turbulence renormalisation methodologies i.e. it is perfectly acceptable not to use a look-up table and directly interpolate the reference power curve.

Consensus Analysis Power Curve Look Up
• Used to simplify and speed up excel calculations
• Defined using linear interpolation of the input power curve with a wind speed interval of 0.01m/s.
• The interval of 0.01m/s means that the table index is given by Round(WindSpeed* 100, 0)
• An Excel defined name is used to reference the look up table called PowerArray
• The look up is applied using Excel formula Index(PowerArray, Round(WindSpeed* 100, 0))